By using DiabetesTimes.co.uk, you agree to our terms and use of cookies to enhance your experience.

Artificial intelligence could help diabetes-related prevent eye damage

By Editor
6th July 2020
Eyecare, Research Technology

Artificial intelligence could help prevent eye damage and sight loss in people with diabetes, saving the NHS millions of pounds a year.

Results from the largest study of artificial intelligence use in the English Diabetic Eye Screening Programme (DESP), have shown the technology can accurately detect serious eye disease among those with diabetes.

This means it could effectively halve the human workload associated with screening for diabetic eye disease, saving millions of pounds annually.

These findings could also pave the way for the technology to be used to reduce the backlog in eye screening appointments following COVID-19 lockdown.

Published in the British Journal of Ophthalmology, the study uses the images from 30,000 scans, involving 120,000 images, in the DESP to look for signs of damage using the EyeArt artificial intelligence eye screening technology.

Accuracy

The results showed that the technology has 95.7% accuracy for detecting damage that would require referral to specialist services, but 100% accuracy for moderate to severe retinopathy or serious disease that could lead to vision loss.

The DESP is set up to screen people with diabetes once a year for signs of damage that could potentially lead to sight loss.

The researchers found that the use of the EyeArt machine learning technology could potentially save £0.5 million per 100,000 screening episodes.

With more than 2.2 million screening episodes per year, the savings could extend to more than £10 million every year in England alone.

The researchers from St George’s, University of London, Moorfields Eye Hospital, UCL, and Homerton University Hospital, Gloucestershire Hospitals and Guy’s and St Thomas’ NHS Foundation Trusts hope the research will enable systematic changes in the UK national screening programme.

Professor Alicja Rudnicka, senior author on the paper, from St George’s, University of London, said: “The national screening programme has been shown to be highly effective at reducing the levels of sight loss due to diabetes.

“Damage to the eye is easily detectable and we have effective treatments available for those that need it. But there is a very high burden on human graders required to diagnose the thousands of images every day – most of which show no signs of disease and require no further action.

“Our study shows that machine learning technology could safely halve the number of images that need to be assessed by humans, freeing up further funds and resources for the NHS. If this technology is rolled out on a national level, it could immediately reduce the backlog of cases created due to the coronavirus pandemic, potentially saving unnecessary vision loss in the diabetic population.”

Professor Adnan Tufail, consultant ophthalmologist from Moorfields Eye Hospital and the Institute of Ophthalmology, UCL, said: “Most AI software is tested by the developers or companies themselves. What is so important about this pivotal study, is it uses data from across the country, has a large sample size of more than 120,000 images of real-world patients and was run independently.

“We have shown that this validated AI software can reduce the burden of humans needing to grade diabetic eye screening images in the UK massively, by more than 5 million images per year. The technology is incredibly fast, does not miss a single case of severe diabetic retinopathy and could contribute to healthcare system recovery post-COVID

“We have developed what we believe to be a gold standard study of how to validate AI for clinical use. We hope that other countries will follow this methodology, giving healthcare systems confidence in using this technology.”

The study was funded by the National Institute for Health Research Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital and UCL Institute of Ophthalmology, as well as the National Institute for Health Research Applied Research Collaboration South London.

Picture courtesy of Dave Guttridge, The Photo Unit

Comments (0)

Register an account or login to comment